Home » Library » Modern Library » James Still Trilemma

James Still Trilemma


Lord, Liar or Lunatic?

An Analysis of the Trilemma

James Still

Christian apologist C. S. Lewis wrote in Mere Christianity that Jesus was either Lord, a lunatic, or "the Devil of Hell. You must make your choice. Either this man was, and is, the Son of God: or else a madman or something worse." Josh McDowell, Campus Crusade for Christ’s popular evangelical speaker, took up Lewis’s argument in his book Evidence That Demands a Verdict. McDowell argues that "Jesus’ claim to be God must be either true or false. If Jesus’s claims are true, then He is the Lord, and we must either accept or reject His lordship." This argument is known as the trilemma because it posits that Jesus must be either the Lord, a liar, or a lunatic. How powerful is this argument and should the nonbeliever take it seriously? I will show that the nonbeliever is justified in rejecting it. The trilemma is fallacious and by analyzing it carefully, we will see why it has come to possess such curious strength in the Fundamentalist community.

The trilemma concludes that Jesus is God so let p stand for the assertion "Jesus is God." McDowell’s three premises that support p are that (1) Jesus’s claims were true, or (2) Jesus’s claims were false and he was a liar, or that (3) Jesus’s claims were false and he was a lunatic. By ruling out the possibility of (2) and (3) McDowell concludes that (1) must be the case and Jesus is indeed Lord and God. To make the analysis easier I will schematize his argument as:

(1) Jesus is telling the truth by asserting that p.

(2) Jesus is not a liar by asserting that p.

(3) Jesus is not a lunatic by asserting that p.

If all three of these premises are true then it would seem that the argument is sound. In fact, at first glance the trilemma seems quite convincing because, like George Washington and the cherry tree, it plays on the notion of whether or not Jesus can tell a lie. However, the argument is not valid because a counterexample demonstrates a case where all of the premises are true while the conclusion is false. First, I will present this counterexample and then I will analyze the trilemma itself to see how it works.

Suppose that Sally asserts that she was born in New York City. Sally bases her knowledge on the fact that she has clear and distinct memories of growing up in New York City. Further, her mother confirms her claim as do teachers, friends, and neighbors. Her doctor tells us that Sally is in perfect mental health and she even passes a lie-detector test when asked about her claim that she was born in New York City. Finally, we concede that (1) Sally is telling the truth that she was born in New York City, (2) she is not lying about that fact, and (3) she is not insane for asserting so. Unfortunately, Sally was born in London. She was given up for adoption as a baby and her mother has never told her of her true origins. This counterexample shows a case where all of the premises are true and yet the conclusion is false. The trilemma is not a valid argument. What went wrong? Quite simply, the argument fails to allow for the possibility that Sally might be mistaken about her assertion. It assumes that the truth or falsity of Sally’s assertion can be known from the fact that she has certain knowledge. This line of reasoning adheres to a theory of knowledge called infallibilism. Infallibilism holds that a knower is someone who cannot be mistaken about that which they claim to know. Let us look closer at the trilemma to see how infallibilism motivates the argument.

Premise (1) is the real workhorse of the trilemma. Notice that the argument leaves no room for Jesus to be mistaken. Since he is not a liar or a devil, his claim must be true. Since Jesus cannot be mistaken about something that he believes to be true, his claim to knowledge is sufficient justification for the truth. Thus, we can represent (1) more accurately as:

(1´) If Jesus knows that p, then it cannot be that he is mistaken that p.

This premise packs such a powerful punch because it very cleverly relies upon the notion that Jesus is perfect. However, notice that there are two possible ways to understand the role that "cannot" plays in this sentence. Because of a linguistic ambiguity, we can read (1´) with the understanding that "cannot" addresses the entire conditional statement (the whole "if-then" sentence) or the consequent only (everything following the word "then"). The former possibility is called a wide-scope reading while the latter possibility is called a narrow-scope reading. Here are the two possible readings with the wide- and narrow-scope versions of (1´) in brackets:

(1´ wide) It cannot be that {if Jesus knows p, then he is mistaken that p}.

(1´ narrow) If Jesus knows p, then it cannot be that {he is mistaken that p}.

The trilemma rests upon this ambiguity; yet, while the wide-scope reading is fallible and defeasible, the narrow-scope reading is infallible and problematic. Neither reading can reach the trilemma’s conclusion alone. Let me explain. The wide-scope reading says that it is difficult to imagine a situation where, if I know a book is on the table I am somehow mistaken about that fact. However, I must admit that I may be dreaming or perhaps that I only think I see a book. Since I am only human, I may be mistaken about what I see. In other words, a wide-scope reading allows for mistakes and recognizes that knowledge is fallible and in need of some justification. Thus, the wide-scope reading allows that Jesus might be mistaken about his claim. For this reason, the trilemma cannot use the wide-scope reading to argue for Jesus’s divinity.

What about the narrow-scope reading? Ultimately the trilemma rests upon this reading, however, it is very problematic. The narrow-scope reading states that it cannot be the case that Jesus’s knowledge is mistaken. Under this infallible reading, it is impossible for there to be a case where, if Jesus knows something, that thing can be false. For the rest of us mere mortals, this is simply not possible. We all hold beliefs that we think are certain and yet our certainty does not guarantee the truth of those beliefs. The trilemma gets a lot of mileage out of the narrow-scope reading because the believer already assumes that anything Jesus knows is certain and true; however, it begs the question for Jesus’s divinity through infallibilism.

In order for the trilemma to look convincing it must conflate the two scopes of "cannot" in the first premise. That way it gets the valid appearance of a wide-scope reading while falling back on the narrow-scope reading for the infallibilism it needs to conclude that Jesus is divine. This is the clever trick behind the trilemma. The believer who already holds the notion that the argument has yet to conclude to, namely, Jesus’s divinity, is easily convinced of the argument’s veracity. However, the nonbeliever who does not presuppose Jesus’s divinity is rightly puzzled by the claim that the trilemma is a convincing proof. The nonbeliever is quite justified in rejecting the trilemma as fallacious.

all rights reserved